Donaldson-Thomas invariants and resurgence

Tom Bridgeland
University of Sheffield

Introduction: non-perturbative partition functions and DT invariants

Let X be a (possibly non-compact) Calabi-Yau threefold.

- Can the DT invariants of X be encoded in a geometric structure?

Gaiotto-Moore-Neizke, Alexandrov-Persson-Pioline, Joyce, Kontsevich-Soibelman, TB, TB-Strachan,

- Is the genus expansion in the topological string free energy

$$
\mathcal{F}(x, \lambda)=\sum_{g \geq 0}\left(\sum_{\beta \in H_{2}(x, \mathbb{Z})} G W_{X}(\beta, g) e^{2 \pi i \omega_{\mathbb{C}} \cdot \beta}\right) \lambda^{2 g-2}
$$

just a formal expansion? Or can it be given a non-perturbative meaning?
Pasquetti-Schiappa, Grassi-Hatsuda-Mariño, Coman-Longhi-Pomoni-Teschner,
Alim-Hollands-Saha-Tulli-Teschner, Grassi-Hao-Neitzke, ...
We will focus on the case when X is the resolved conifold.

1. Coherent sheaves on the resolved conifold

Coherent sheaves on \mathbb{P}^{1}

Let $\mathcal{A}=\operatorname{Coh}\left(\mathbb{P}^{1}\right)$ be the abelian category of coherent sheaves on \mathbb{P}^{1}.
The indecomposable objects of \mathcal{A} are
(i) line bundles $\mathcal{O}_{\mathbb{P}^{1}}(n)$ for some $n \in \mathbb{Z}$;
(ii) length $k \geq 1$ thickenings $\mathcal{O}_{k x}$ of points $x \in \mathbb{P}^{1}$.

The Grothendieck group of \mathcal{A} is defined to be

$$
K_{0}(\mathcal{A})=\bigoplus_{E \in \mathcal{A} / \cong} \mathbb{Z} \cdot[E] /\binom{0 \rightarrow E_{1} \rightarrow E_{2} \rightarrow E_{3} \rightarrow 0}{\Longrightarrow\left[E_{2}\right]=\left[E_{1}\right]+\left[E_{3}\right]}
$$

Sending sheaves to their rank and degree defines an isomorphism

$$
(r, d): K_{0}(\mathcal{A}) \longrightarrow \mathbb{Z}^{\oplus 2}
$$

Equivalently $K_{0}(\mathcal{A})=\mathbb{Z} \beta \oplus \mathbb{Z} \delta$ is freely generated by $\beta=\left[\mathcal{O}_{\mathbb{P}^{1}}\right]$ and $\delta=\left[\mathcal{O}_{x}\right]$.

Indecomposable objects of $\mathcal{A}=\operatorname{Coh}\left(\mathbb{P}^{1}\right)$

The derived category of \mathbb{P}^{1}

Introduce the bounded derived category $\mathcal{D}=D^{b}(\mathcal{A})$.
The objects are cochain complexes in $\mathcal{A}=\operatorname{Coh}\left(\mathbb{P}^{1}\right)$ up to quasi-isomorphism.
There is an obvious embedding $\mathcal{A} \hookrightarrow \mathcal{D}$.
The category \mathcal{D} is triangulated: there are shift functors $[k]: \mathcal{D} \rightarrow \mathcal{D}$ and exact triangles.
Since $\operatorname{dim}_{\mathbb{C}}\left(\mathbb{P}^{1}\right)=1$ every $E \in \mathcal{D}$ satisfies $E \cong \bigoplus_{i \in \mathbb{Z}} H^{i}(E)[-i]$.
So every indecomposable object of \mathcal{D} is a shift of an object from \mathcal{A}.
We define the Grothendieck group $K_{0}(\mathcal{D})$ using triangles instead of exact sequences.
Then $K_{0}(\mathcal{D})=K_{0}(\mathcal{A})$ and $[E[d]]=(-1)^{d}[E] \in K_{0}(\mathcal{D})$.

Indecomposable objects of $\mathcal{D}=\mathcal{D}^{b} \operatorname{Coh}\left(\mathbb{P}^{1}\right)$ up to double shift [2]

Stability conditions and DT invariants

Let \mathcal{D} be a triangulated category, e.g. $\mathcal{D}=\mathcal{D}^{b} \operatorname{Coh}(X)$.
In general, to form nice moduli spaces we need to choose a stability condition.
We first take a "charge lattice" $\Gamma=\mathbb{Z}^{\oplus n}$ with a map ch: $K_{0}(\mathcal{D}) \rightarrow \Gamma$.
A stability condition $\sigma=(Z, \mathcal{P})$ on \mathcal{D} then consists of

- a group homomorphism $Z: \Gamma \rightarrow \mathbb{C}$ called the central charge,
- a subcategory $\mathcal{P}(\phi) \subset \mathcal{D}$ for each phase $\phi \in \mathbb{R}$ whose objects are called semistable, together satisfying a short list of axioms.

The set of all stability conditions on \mathcal{D} forms a complex manifold.
If \mathcal{D} has the CY_{3} property (and σ is "nice"), we can also define DT invariants

$$
\Omega_{\sigma}(\gamma) \in \mathbb{Q}, \quad \gamma \in \Gamma
$$

which are virtual Euler characteristics of moduli spaces of σ-semistable objects.

The resolved conifold

Let X to be the total space of the rank 2 bundle $\mathcal{O}_{\mathbb{P}^{1}}(-1)^{\oplus 2}$ on \mathbb{P}^{1}.
Then X is a non-compact Calabi-Yau: there is a non-vanishing section of ω_{X}.
There is a single compact curve $C=\mathbb{P}^{1}$ in X given by the zero-section.
Contracting C defines a crepant resolution of the affine variety $(x y-z w) \subset \mathbb{C}^{4}$.

Stability conditions on the resolved conifold

Let $\mathcal{D} \subset \mathcal{D}^{b}(\operatorname{Coh}(X))$ be the subcategory of compactly-supported objects.
There is a group homomorphism ch: $K_{0}(\mathcal{D}) \rightarrow \Gamma=\mathbb{Z} \beta \oplus \mathbb{Z} \delta$.
Coherent sheaves on \mathbb{P}^{1} define objects of \mathcal{D} via the inclusion $\mathbb{P}^{1}=C \subset X$.

Theorem

Choose $v, w \in \mathbb{C}^{*}$ with $\operatorname{Im}(v / w)>0$. Then
(a) there is a stability condition $\sigma=(Z, \mathcal{P})$ on \mathcal{D}, unique up to [2], such that
(i) $Z(\beta)=v$ and $Z(\delta)=-w$,
(ii) the stable objects are $\left\{\mathcal{O}_{C}(n): n \in \mathbb{Z}\right\}$ and $\left\{\mathcal{O}_{x}: x \in X\right\}$ and their shifts;
(b) the nonzero $D T$ invariants for σ are

$$
\Omega_{\sigma}(\pm(\beta+n \delta))=1 \text { for } n \in \mathbb{Z}, \quad \Omega_{\sigma}(k \delta)=-2 \text { for } k \in \mathbb{Z} \backslash\{0\}
$$

Central charges in the case $v=i$ and $w=1$

Figure: The images of the stable objects under $Z: K_{0}(\mathcal{D}) \rightarrow \mathbb{C}$.

Automorphisms of $\left(\mathbb{C}^{*}\right)^{n}$ associated to rays

Let \mathcal{D} be a CY_{3} triangulated category with a charge lattice ch: $K_{0}(\mathcal{D}) \rightarrow \Gamma \cong \mathbb{Z}^{\oplus n}$.
We assume the skew-symmetric Euler form on $K_{0}(\mathcal{D})$ descends to

$$
\langle-,-\rangle: \Gamma \times \Gamma \rightarrow \mathbb{Z} .
$$

Introduce the torus $\mathbb{T}=\operatorname{Hom}_{\mathbb{Z}}\left(\Gamma, \mathbb{C}^{*}\right) \cong\left(\mathbb{C}^{*}\right)^{n}$ with character lattice Γ.
It has a Poisson structure: $\left\{X_{\gamma_{1}}, X_{\gamma_{2}}\right\}=\left\langle\gamma_{1}, \gamma_{2}\right\rangle \cdot X_{\gamma_{1}+\gamma_{2}}$.
Fix a stability condition $\sigma=(Z, \mathcal{P})$ on \mathcal{D}.
To each ray $\ell \subset \mathbb{C}^{*}$ we can try to associate a Poisson automorphism \mathbb{S}_{ℓ} of \mathbb{T}

$$
\mathbb{S}(\ell)^{*}\left(X_{\beta}\right)=X_{\beta} \cdot \prod_{\gamma \in \Gamma: Z(\gamma) \in \ell}\left(1+X_{\gamma}\right)^{\Omega_{\sigma}(\gamma) \cdot\langle\beta, \gamma\rangle} .
$$

We need conditions on the growth of the $\Omega_{\sigma}(\gamma)$ to make analytic sense of this.

Ray / radar / peacock diagram

In the conifold case $\langle-,-\rangle=0$, so we replace Γ by

$$
\Gamma^{\vee} \oplus \Gamma=\mathbb{Z} \delta^{\vee} \oplus \mathbb{Z} \beta^{\vee} \oplus \mathbb{Z} \beta \oplus \mathbb{Z} \delta .
$$

Associated to each ray is a (partially-defined) automorphism of $\left(\mathbb{C}^{*}\right)^{4}$, e.g.

$$
\mathbb{S}_{\ell\left(\mathcal{O}_{C}(n)\right)}:\left(X_{\delta}^{\vee}, X_{\beta}^{\vee}, X_{\beta}, X_{\delta}\right) \mapsto\left(X_{\delta}^{\vee}\left(1+X_{\beta} X_{\delta}^{n}\right)^{n}, X_{\beta}^{\vee}\left(1+X_{\beta} X_{\delta}^{n}\right), X_{\beta}, X_{\delta}\right) .
$$

2. Borel summation of the genus expansion

Borel summation

Suppose we have a formal complex power series $f(\epsilon)=\sum_{k \geq 0} a_{k} \epsilon^{k+1}$.
If the coefficients grow like $\left|a_{k}\right| \sim k$! then the radius of convergence is zero.
Define the Borel transform to be $\hat{f}(\xi)=\sum_{k \geq 0} \frac{a_{k}}{k!} \xi^{k}$.
Suppose this sum converges and hence defines an analytic function $\hat{f}(\xi)$ near $\xi=0$.
Also that $\hat{f}(\xi)$ can be analytically continued along $\mathbb{R}_{>0}$ and doesn't grow too fast.
Then define an analytic function in the half-plane $\operatorname{Re}(\epsilon)>0$ by the Laplace transform

$$
(\mathcal{B} f)(\epsilon)=\int_{0}^{\infty} \hat{f}(\xi) e^{-\xi / \epsilon} d \xi
$$

When all this works $(\mathcal{B} f)(\epsilon)$ is called the Borel sum of the series $f(\epsilon)$.
If the series $f(\epsilon)$ is convergent then $(\mathcal{B} f)(\epsilon)$ exists and coincides with the usual sum.
More generally, $f(\epsilon)$ is an asymptotic expansion of $(\mathcal{B} f)(\epsilon)$ as $\epsilon \rightarrow 0$.

Stokes phenomena

In our examples $\hat{f}(\xi)$ analytically continues to a meromorphic function on \mathbb{C}. We can take the Borel sum along any ray $r=\mathbb{R}_{>0} \cdot \xi_{0}$ containing no poles of $\hat{f}(\xi)$.

Different rays $r \subset \mathbb{C}$ give different Borel sums $\left(\mathcal{B}_{r} f\right)(\epsilon)$ in different half-planes.
They all have the same asymptotic expansion as $\epsilon \rightarrow 0$.

Example: the Stirling series

The Stirling series

$$
f(\epsilon)=\sum_{k \geq 0} \frac{B_{k+2}}{(k+2)(k+1)} \epsilon^{k+1},
$$

has zero radius of convergence. The Borel transform is convergent near $\xi=0$

$$
\hat{f}(\xi)=\sum_{k \geq 0} \frac{B_{k+2}}{(k+2)!} \xi^{k}=\xi^{-2}\left(\frac{\xi}{2} \operatorname{coth}(\xi / 2)-1\right),
$$

and extends to a meromorphic function on \mathbb{C}.
It has poles at the points $2 \pi i m$ for $m \in \mathbb{Z} \backslash\{0\}$, so we choose a ray $r \subset \mathbb{C} \backslash i \mathbb{R}$.
Then $r \subset \pm\{\xi \in \mathbb{C}: \operatorname{Re}(\xi)>0\}$, and we get one of two Borel sums

$$
\left(\mathcal{B}_{r} f\right)(\epsilon)= \pm \log \Upsilon\left(\pm \epsilon^{-1}\right), \quad \Upsilon(w)=\frac{e^{w} \cdot \Gamma(w)}{\sqrt{2 \pi} \cdot w^{w-\frac{1}{2}}}
$$

Topological string free energy of the resolved conifold

We fix $(v, w) \in\left(\mathbb{C}^{*}\right)^{2}$ with $\operatorname{Im}(v / w)>0$. Set $t=v / w$ and $\lambda=2 \pi \epsilon / w$.
The topological string free energy is the Gromov-Witten generating function

$$
\mathcal{F}(v, w, \epsilon)=\mathcal{F}(t, \lambda)=\sum_{g \geq 0}\left(\sum_{d \geq 0} \mathrm{GW}(d \beta, g) e^{2 \pi i d t}\right) \lambda^{2 g-2}
$$

The sums over d are convergent, but the sum over g is not. We get a formal series

$$
\begin{gathered}
\mathcal{F}(\epsilon)=\left(\zeta(3)-\operatorname{Li}_{3}\left(e^{2 \pi i v / w}\right)\right)\left(\frac{2 \pi i \epsilon}{w}\right)^{-2}+\frac{1}{12} \operatorname{Li}_{1}\left(e^{2 \pi i v / w}\right) \\
+\sum_{g \geq 2} \frac{B_{2 g} L i_{3-2 g}\left(e^{2 \pi i v / w}\right)}{2 g(2 g-2)!}\left(\frac{2 \pi i \epsilon}{w}\right)^{2 g-2}+\sum_{g \geq 2} \frac{B_{2 g} B_{2 g-2}}{2 g(2 g-2)(2 g-2)!}\left(\frac{2 \pi i \epsilon}{w}\right)^{2 g-2}
\end{gathered}
$$

Theorem (Pasquetti-Schiappa, Alim-Saha-Teschner-Tulli)

The series $\mathcal{F}(\epsilon)$ is Borel summable along a generic ray $r \subset \mathbb{C}^{*}$.

More precisely ...

Work of Alim-Saha-Teschner-Tulli shows that:

- The Borel transform $\hat{\mathcal{F}}(\xi)$ extends to a meromorphic function on \mathbb{C}.
- The poles lie on the rays spanned by $\pm(v+n w)$ and $\pm w$.
- The series $\mathcal{F}(\epsilon)$ is Borel summable along all other rays $r \subset \mathbb{C}^{*}$.
- The Borel sum is log of a Barnes triple sine function.
- The Stokes phenomena can be described in terms of DT invariants.

Closely-related work of Garoufalidis-Kashaev on resurgence for the Fadeev dilogarithm.

Link with DT invariants

For each non-Stokes ray $r \subset \mathbb{C}^{*}$ define $X_{r}: \mathbb{H}_{r} \rightarrow \mathbb{T} \cong\left(\mathbb{C}^{*}\right)^{4}$ by

$$
\begin{gathered}
\frac{\partial}{\partial \epsilon} \log X_{r, \delta \vee}(v, w, \epsilon)=\frac{\partial}{\partial w} \mathcal{F}_{r}(v, w, \epsilon), \quad \frac{\partial}{\partial \epsilon} \log X_{r, \beta \vee}(v, w, \epsilon)=\frac{\partial}{\partial v} \mathcal{F}_{r}(v, w, \epsilon) . \\
X_{r, \beta}(\epsilon)=\exp (v / \epsilon), \quad X_{r, \delta}=\exp (w / \epsilon)
\end{gathered}
$$

Then if $r_{ \pm}$are small perturbations of a Stokes ray $\ell \subset \mathbb{C}^{*}$ we have

$$
X_{r_{+}}(\epsilon)=\mathbb{S}(\ell)\left(X_{r_{-}}(\epsilon)\right), \quad \epsilon \in \mathbb{H}_{r_{+}} \cap \mathbb{H}_{r_{-}}
$$

Conclusion

Associated to each point of the Kähler moduli space there are:

- a countable collection of rays $\ell=\mathbb{R}_{>0} \cdot e^{i \pi \phi} \subset \mathbb{C}^{*}$,
- corresponding (partially-defined) Poisson automorphisms \mathbb{S}_{ℓ} of $\mathbb{T} \cong\left(\mathbb{C}^{*}\right)^{n}$.

This can be obtained in two different ways:

- by considering a stability condition on $\mathcal{D}=\mathcal{D}^{b} \operatorname{Coh}(X)$ and its DT invariants,
- by studying Borel sums of the GW generating function and their Stokes behaviour.

Does this extend to the whole of stability space? Does it work more generally?
Next case to consider: CY threefolds $u^{2}+v^{2}+w^{2}=q(x) /$ theories of class $S\left[A_{1}\right]$.

3. Non-linear Frobenius structures

What is the geometric setting for all this?

The answer is suggested by an analogy with Frobenius manifolds.
Associated to each point of a semi-simple Frobenius manifold M there are:

- a finite collection of rays $\ell=\mathbb{R}_{>0} \cdot e^{i \pi \phi} \subset \mathbb{C}^{*}$,
- corresponding Stokes factors $\mathbb{S}_{\ell} \in \mathrm{GL}\left(T_{M, m}\right)$.

A Frobenius structure defines a pencil of flat, torsion-free connections on T_{M}.
Slightly more: there is an extended connection on the pullback of T_{M} to $M \times \mathbb{P}^{1}$.
Restricted to $\{m\} \times \mathbb{P}^{1}$ it takes the form

$$
\nabla_{m}=d-\left(\frac{U}{\epsilon^{2}}+\frac{V}{\epsilon}\right) d \epsilon
$$

The irregular singularity at $\epsilon=0$ leads to divergent formal solutions, Borel sums etc.

Non-linear version: Joyce structures

Assume that $\langle-,-\rangle$ is non-degenerate so the Poisson torus $\mathbb{T} \cong\left(\mathbb{C}^{*}\right)^{n}$ is symplectic.
Replace the group $\mathrm{GL}_{n}(\mathbb{C})$ in the Frobenius story by Symp (\mathbb{T}).
Look for a pencil of non-linear, flat, symplectic connections on T_{M}.
Along with other features, e.g. a \mathbb{C}^{*}-action, this leads to the notion of a Joyce structure.
We expect a Joyce structure on space of stability conditions of CY_{3} category.
But we need conditions on the growth rates of the DT invariants.
Constructing the Joyce structure from the DT invariants involves solving
Riemann-Hilbert problems: this is hard!

Lifts of tangent vectors

Pencil of non-linear connections on the tangent bundle

Let M be a complex manifold with tangent bundle $\pi: X=T_{M} \rightarrow M$.
There is a canonical isomorphism $\nu: \pi^{*}\left(T_{M}\right) \rightarrow \operatorname{ker}\left(\pi_{*}\right)$. Set $v=i \circ \nu$.
Fix a non-linear connection on π, i.e. a splitting $h: \pi^{*}\left(T_{M}\right) \rightarrow T_{X}$.

Consider the pencil of connections $h_{\epsilon}=h+\epsilon^{-1} v$ with $\epsilon^{-1} \in \mathbb{C}$.
Take a holomorphic symplectic form ω on M.
The fibres $\pi^{-1}(m)$ are symplectic manifolds.
Assume that all the connections h_{ϵ} are flat and symplectic.

Joyce structure and associated hyperkähler structure

For a Joyce structure we impose extra symmetries: invariance under

- a \mathbb{C}^{*}-action on M lifted to X,
- translation by an integral affine structure $T_{M}^{\mathbb{Z}} \subset T_{M}$,
- the involution $-1: T_{M} \rightarrow T_{M}$.

We have a splitting $T_{X}=\operatorname{im}(v) \oplus \operatorname{im}(h) \cong T_{M} \oplus T_{M}$.
This gives a complex hyperkähler structure on X :

$$
g=\left(\begin{array}{cc}
0 & \omega \\
\omega & 0
\end{array}\right), \quad I=\left(\begin{array}{cc}
i \cdot \mathbb{1} & 0 \\
0 & -i \cdot \mathbb{1}
\end{array}\right), \quad J=\left(\begin{array}{cc}
0 & -\mathbb{1} \\
\mathbb{1} & 0
\end{array}\right) .
$$

Thus (I, J, K) preserve g and are parallel for $\nabla^{L C}$ on T_{x}.

Twistor space of a Joyce structure

The image of $h_{\epsilon}=h+\epsilon^{-1} v$ is an integrable distribution $H_{\epsilon} \subset T_{X}$.
Define the space of leaves $Z_{\epsilon}=X / H_{\epsilon}$.
Varying ϵ gives a twistor space $\pi: Z \rightarrow \mathbb{P}^{1}$.

There is a \mathbb{C}^{*}-action on Z lifting the one on \mathbb{P}^{1}.
The central fibre is $Z_{0}=M$.

In progress: class $S\left[A_{1}\right]$ case and generating functions

Moduli-theoretic construction of Joyce structures for theories of class $S\left[A_{1}\right]$.

- Partly joint with Nikita Nikolaev and Menelaos Zikidis.
- Like a complexified Hitchin system, but much simpler ("conformal limit").
- Twistor fibres Z_{ϵ} for $\epsilon \in \mathbb{C}^{*}$ have an étale map^{1} to the cluster variety!

Use the symplectic geometry of the Joyce structure to define generating functions.

- The complex hyperkähler manifold X is the space of twistor lines.
- This gives a symplectic map $F: X \rightarrow Z_{1} \times Z_{\infty}$.
- Choosing symplectic potentials gives a generating function.
- In the conifold example this reproduces the partition function.
- In the class $S\left[A_{1}\right]$ case of the A_{2} quiver we get the Painlevé $\mathrm{I} \tau$-function.

[^0]
[^0]: ${ }^{1}$ I made a mistake in the talk here, by claiming they were equal to the cluster variety.

