Donaldson-Thomas invariants and resurgence

Tom Bridgeland

University of Sheffield

Introduction: non-perturbative partition functions and DT invariants

Let X be a (possibly non-compact) Calabi-Yau threefold.

- Can the DT invariants of X be encoded in a geometric structure? Gaiotto-Moore-Neizke, Alexandrov-Persson-Pioline, Joyce, Kontsevich-Soibelman, TB, TB-Strachan,
- Is the genus expansion in the topological string free energy

$$\mathcal{F}(x,\lambda) = \sum_{g \ge 0} \Big(\sum_{\beta \in H_2(X,\mathbb{Z})} GW_X(\beta,g) e^{2\pi i \omega_{\mathbb{C}} \cdot \beta} \Big) \lambda^{2g-2},$$

just a formal expansion? Or can it be given a non-perturbative meaning? Pasquetti-Schiappa, Grassi-Hatsuda-Mariño, Coman-Longhi-Pomoni-Teschner, Alim-Hollands-Saha-Tulli-Teschner, Grassi-Hao-Neitzke, ...

We will focus on the case when X is the resolved conifold.

1. Coherent sheaves on the resolved conifold

Coherent sheaves on \mathbb{P}^1

Let $\mathcal{A} = \mathsf{Coh}(\mathbb{P}^1)$ be the abelian category of coherent sheaves on \mathbb{P}^1 .

The indecomposable objects of $\mathcal A$ are

- (i) line bundles $\mathcal{O}_{\mathbb{P}^1}(n)$ for some $n \in \mathbb{Z}$;
- (ii) length $k \ge 1$ thickenings \mathcal{O}_{kx} of points $x \in \mathbb{P}^1$.

The Grothendieck group of \mathcal{A} is defined to be

$$\mathcal{K}_{0}(\mathcal{A}) = \bigoplus_{E \in \mathcal{A}/\cong} \mathbb{Z} \cdot [E] / \left(\begin{array}{c} 0 \to E_{1} \to E_{2} \to E_{3} \to 0 \\ \Longrightarrow \quad [E_{2}] = [E_{1}] + [E_{3}] \end{array} \right).$$

Sending sheaves to their rank and degree defines an isomorphism

$$(r, d)$$
: $K_0(\mathcal{A}) \longrightarrow \mathbb{Z}^{\oplus 2}$.

Equivalently $K_0(\mathcal{A}) = \mathbb{Z}\beta \oplus \mathbb{Z}\delta$ is freely generated by $\beta = [\mathcal{O}_{\mathbb{P}^1}]$ and $\delta = [\mathcal{O}_x]$.

Indecomposable objects of $\mathcal{A} = \mathsf{Coh}(\mathbb{P}^1)$

The derived category of \mathbb{P}^1

- Introduce the bounded derived category $\mathcal{D} = D^b(\mathcal{A})$.
- The objects are cochain complexes in $\mathcal{A} = Coh(\mathbb{P}^1)$ up to quasi-isomorphism.
- There is an obvious embedding $\mathcal{A} \hookrightarrow \mathcal{D}$.
- The category \mathcal{D} is triangulated: there are shift functors $[k]: \mathcal{D} \to \mathcal{D}$ and exact triangles. Since dim_C(\mathbb{P}^1) = 1 every $E \in \mathcal{D}$ satisfies $E \cong \bigoplus_{i \in \mathbb{Z}} H^i(E)[-i]$.
- So every indecomposable object of \mathcal{D} is a shift of an object from \mathcal{A} .
- We define the Grothendieck group $K_0(\mathcal{D})$ using triangles instead of exact sequences. Then $K_0(\mathcal{D}) = K_0(\mathcal{A})$ and $[E[d]] = (-1)^d [E] \in K_0(\mathcal{D})$.

Indecomposable objects of $\mathcal{D} = \mathcal{D}^b \operatorname{Coh}(\mathbb{P}^1)$ up to double shift [2]

Stability conditions and DT invariants

Let \mathcal{D} be a triangulated category, e.g. $\mathcal{D} = \mathcal{D}^b \operatorname{Coh}(X)$.

In general, to form nice moduli spaces we need to choose a stability condition.

We first take a "charge lattice" $\Gamma = \mathbb{Z}^{\oplus n}$ with a map ch: $\mathcal{K}_0(\mathcal{D}) \to \Gamma$.

A stability condition $\sigma = (Z, P)$ on D then consists of

• a group homomorphism $Z \colon \Gamma \to \mathbb{C}$ called the central charge,

• a subcategory $\mathcal{P}(\phi) \subset \mathcal{D}$ for each phase $\phi \in \mathbb{R}$ whose objects are called semistable, together satisfying a short list of axioms.

The set of all stability conditions on \mathcal{D} forms a complex manifold.

If \mathcal{D} has the CY₃ property (and σ is "nice"), we can also define DT invariants

$$\Omega_{\sigma}(\gamma) \in \mathbb{Q}, \qquad \gamma \in \mathsf{\Gamma},$$

which are virtual Euler characteristics of moduli spaces of σ -semistable objects.

The resolved conifold

Let X to be the total space of the rank 2 bundle $\mathcal{O}_{\mathbb{P}^1}(-1)^{\oplus 2}$ on \mathbb{P}^1 .

Then X is a non-compact Calabi-Yau: there is a non-vanishing section of ω_X .

There is a single compact curve $C = \mathbb{P}^1$ in X given by the zero-section.

Contracting C defines a crepant resolution of the affine variety $(xy - zw) \subset \mathbb{C}^4$.

Stability conditions on the resolved conifold

Let $\mathcal{D} \subset \mathcal{D}^{b}(Coh(X))$ be the subcategory of compactly-supported objects.

There is a group homomorphism ch: $\mathcal{K}_0(\mathcal{D}) \to \Gamma = \mathbb{Z}\beta \oplus \mathbb{Z}\delta$.

Coherent sheaves on \mathbb{P}^1 define objects of \mathcal{D} via the inclusion $\mathbb{P}^1 = \mathcal{C} \subset X$.

Theorem

Choose $v, w \in \mathbb{C}^*$ with Im(v/w) > 0. Then

(a) there is a stability condition σ = (Z, P) on D, unique up to [2], such that
(i) Z(β) = v and Z(δ) = -w,

(ii) the stable objects are $\{\mathcal{O}_C(n) : n \in \mathbb{Z}\}$ and $\{\mathcal{O}_x : x \in X\}$ and their shifts;

(b) the nonzero DT invariants for σ are

 $\Omega_{\sigma}(\pm(\beta + n\delta)) = 1 \text{ for } n \in \mathbb{Z}, \qquad \Omega_{\sigma}(k\delta) = -2 \text{ for } k \in \mathbb{Z} \setminus \{0\}.$

Central charges in the case v = i and w = 1

Figure: The images of the stable objects under $Z \colon K_0(\mathcal{D}) \to \mathbb{C}$.

Automorphisms of $(\mathbb{C}^*)^n$ associated to rays

Let \mathcal{D} be a CY₃ triangulated category with a charge lattice ch: $\mathcal{K}_0(\mathcal{D}) \to \Gamma \cong \mathbb{Z}^{\oplus n}$. We assume the skew-symmetric Euler form on $\mathcal{K}_0(\mathcal{D})$ descends to

$$\langle -, - \rangle \colon \Gamma \times \Gamma \to \mathbb{Z}.$$

Introduce the torus $\mathbb{T} = \text{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C}^*) \cong (\mathbb{C}^*)^n$ with character lattice Γ .

It has a Poisson structure: $\{X_{\gamma_1}, X_{\gamma_2}\} = \langle \gamma_1, \gamma_2 \rangle \cdot X_{\gamma_1 + \gamma_2}.$

Fix a stability condition $\sigma = (Z, \mathcal{P})$ on \mathcal{D} .

To each ray $\ell \subset \mathbb{C}^*$ we can try to associate a Poisson automorphism \mathbb{S}_ℓ of $\mathbb T$

$$\mathbb{S}(\ell)^*(X_eta) = X_eta \cdot \prod_{\gamma \in \Gamma: Z(\gamma) \in \ell} (1 + X_\gamma)^{\Omega_\sigma(\gamma) \cdot \langle eta, \gamma
angle}.$$

We need conditions on the growth of the $\Omega_{\sigma}(\gamma)$ to make analytic sense of this.

Ray / radar / peacock diagram

In the conifold case $\langle -, - \rangle = 0$, so we replace Γ by

 $\Gamma^{\vee} \oplus \Gamma = \mathbb{Z}\delta^{\vee} \oplus \mathbb{Z}\beta^{\vee} \oplus \mathbb{Z}\beta \oplus \mathbb{Z}\delta.$

Associated to each ray is a (partially-defined) automorphism of $(\mathbb{C}^\ast)^4,$ e.g.

$$\mathbb{S}_{\ell(\mathcal{O}_{\mathcal{C}}(n))} \colon (X_{\delta}^{\vee}, X_{\beta}^{\vee}, X_{\beta}, X_{\delta}) \mapsto (X_{\delta}^{\vee}(1 + X_{\beta}X_{\delta}^{n})^{n}, X_{\beta}^{\vee}(1 + X_{\beta}X_{\delta}^{n}), X_{\beta}, X_{\delta}).$$

2. Borel summation of the genus expansion

Borel summation

Suppose we have a formal complex power series $f(\epsilon) = \sum_{k\geq 0} a_k \epsilon^{k+1}$.

If the coefficients grow like $|a_k| \sim k!$ then the radius of convergence is zero.

Define the Borel transform to be $\hat{f}(\xi) = \sum_{k \ge 0} \frac{a_k}{k!} \xi^k$.

Suppose this sum converges and hence defines an analytic function $\hat{f}(\xi)$ near $\xi = 0$. Also that $\hat{f}(\xi)$ can be analytically continued along $\mathbb{R}_{>0}$ and doesn't grow too fast. Then define an analytic function in the half-plane $\operatorname{Re}(\epsilon) > 0$ by the Laplace transform

$$(\mathcal{B}f)(\epsilon) = \int_0^\infty \hat{f}(\xi) e^{-\xi/\epsilon} d\xi.$$

When all this works $(\mathcal{B}f)(\epsilon)$ is called the Borel sum of the series $f(\epsilon)$.

If the series $f(\epsilon)$ is convergent then $(\mathcal{B}f)(\epsilon)$ exists and coincides with the usual sum. More generally, $f(\epsilon)$ is an asymptotic expansion of $(\mathcal{B}f)(\epsilon)$ as $\epsilon \to 0$.

Stokes phenomena

In our examples $\hat{f}(\xi)$ analytically continues to a meromorphic function on \mathbb{C} . We can take the Borel sum along any ray $r = \mathbb{R}_{>0} \cdot \xi_0$ containing no poles of $\hat{f}(\xi)$.

Different rays $r \subset \mathbb{C}$ give different Borel sums $(\mathcal{B}_r f)(\epsilon)$ in different half-planes.

They all have the same asymptotic expansion as $\epsilon \rightarrow 0$.

Example: the Stirling series

The Stirling series

$$f(\epsilon)=\sum_{k\geq 0}rac{B_{k+2}}{(k+2)(k+1)}\epsilon^{k+1},$$

has zero radius of convergence. The Borel transform is convergent near $\xi = 0$

$$\hat{f}(\xi) = \sum_{k \ge 0} \frac{B_{k+2}}{(k+2)!} \xi^k = \xi^{-2} (\frac{\xi}{2} \coth(\xi/2) - 1),$$

and extends to a meromorphic function on \mathbb{C} .

It has poles at the points $2\pi im$ for $m \in \mathbb{Z} \setminus \{0\}$, so we choose a ray $r \subset \mathbb{C} \setminus i\mathbb{R}$.

Then $r \subset \pm \{\xi \in \mathbb{C} : \operatorname{Re}(\xi) > 0\}$, and we get one of two Borel sums

$$(\mathcal{B}_r f)(\epsilon) = \pm \log \Upsilon(\pm \epsilon^{-1}), \qquad \Upsilon(w) = \frac{e^w \cdot \Gamma(w)}{\sqrt{2\pi} \cdot w^{w-\frac{1}{2}}}.$$

Topological string free energy of the resolved conifold

We fix $(v, w) \in (\mathbb{C}^*)^2$ with $\operatorname{Im}(v/w) > 0$. Set t = v/w and $\lambda = 2\pi\epsilon/w$.

The topological string free energy is the Gromov-Witten generating function

$$\mathcal{F}(\mathbf{v},\mathbf{w},\epsilon) = \mathcal{F}(\mathbf{t},\lambda) = \sum_{g\geq 0} \Big(\sum_{d\geq 0} \mathsf{GW}(d\beta,g)e^{2\pi i dt}\Big)\lambda^{2g-2}.$$

The sums over d are convergent, but the sum over g is not. We get a formal series

$$\mathcal{F}(\epsilon) = (\zeta(3) - \operatorname{Li}_{3}(e^{2\pi i \nu/w})) \left(\frac{2\pi i \epsilon}{w}\right)^{-2} + \frac{1}{12} \operatorname{Li}_{1}(e^{2\pi i \nu/w}) \\ + \sum_{g \ge 2} \frac{B_{2g} \operatorname{Li}_{3-2g}(e^{2\pi i \nu/w})}{2g (2g - 2)!} \left(\frac{2\pi i \epsilon}{w}\right)^{2g - 2} + \sum_{g \ge 2} \frac{B_{2g} B_{2g - 2}}{2g (2g - 2) (2g - 2)!} \left(\frac{2\pi i \epsilon}{w}\right)^{2g - 2}.$$

Theorem (Pasquetti-Schiappa, Alim-Saha-Teschner-Tulli)

The series $\mathcal{F}(\epsilon)$ is Borel summable along a generic ray $r \subset \mathbb{C}^*$.

More precisely ...

Work of Alim-Saha-Teschner-Tulli shows that:

- The Borel transform $\hat{\mathcal{F}}(\xi)$ extends to a meromorphic function on \mathbb{C} .
- The poles lie on the rays spanned by $\pm(v + nw)$ and $\pm w$.
- The series $\mathcal{F}(\epsilon)$ is Borel summable along all other rays $r \subset \mathbb{C}^*$.
- The Borel sum is log of a Barnes triple sine function.
- The Stokes phenomena can be described in terms of DT invariants.

Closely-related work of Garoufalidis-Kashaev on resurgence for the Fadeev dilogarithm.

Link with DT invariants

For each non-Stokes ray $r \subset \mathbb{C}^*$ define $X_r \colon \mathbb{H}_r \to \mathbb{T} \cong (\mathbb{C}^*)^4$ by

$$\frac{\partial}{\partial \epsilon} \log X_{r,\delta^{\vee}}(v,w,\epsilon) = \frac{\partial}{\partial w} \mathcal{F}_r(v,w,\epsilon), \qquad \frac{\partial}{\partial \epsilon} \log X_{r,\beta^{\vee}}(v,w,\epsilon) = \frac{\partial}{\partial v} \mathcal{F}_r(v,w,\epsilon).$$

$$X_{r,\beta}(\epsilon) = \exp(v/\epsilon), \qquad X_{r,\delta} = \exp(w/\epsilon).$$

Then if r_{\pm} are small perturbations of a Stokes ray $\ell \subset \mathbb{C}^*$ we have

$$X_{r_+}(\epsilon) = \mathbb{S}(\ell)(X_{r_-}(\epsilon)), \qquad \epsilon \in \mathbb{H}_{r_+} \cap \mathbb{H}_{r_-}$$

Conclusion

Associated to each point of the Kähler moduli space there are:

• a countable collection of rays $\ell = \mathbb{R}_{>0} \cdot e^{i\pi\phi} \subset \mathbb{C}^*$,

• corresponding (partially-defined) Poisson automorphisms \mathbb{S}_{ℓ} of $\mathbb{T} \cong (\mathbb{C}^*)^n$. This can be obtained in two different ways:

- by considering a stability condition on $\mathcal{D} = \mathcal{D}^b \operatorname{Coh}(X)$ and its DT invariants,
- by studying Borel sums of the GW generating function and their Stokes behaviour. Does this extend to the whole of stability space? Does it work more generally? Next case to consider: CY threefolds $u^2 + v^2 + w^2 = q(x) /$ theories of class $S[A_1]$.

3. Non-linear Frobenius structures

What is the geometric setting for all this?

The answer is suggested by an analogy with Frobenius manifolds.

Associated to each point of a semi-simple Frobenius manifold M there are:

- a finite collection of rays $\ell = \mathbb{R}_{>0} \cdot e^{i\pi\phi} \subset \mathbb{C}^*$,
- corresponding Stokes factors $\mathbb{S}_{\ell} \in GL(T_{M,m})$.

A Frobenius structure defines a pencil of flat, torsion-free connections on T_M . Slightly more: there is an extended connection on the pullback of T_M to $M \times \mathbb{P}^1$. Restricted to $\{m\} \times \mathbb{P}^1$ it takes the form

$$abla_m = d - \left(rac{U}{\epsilon^2} + rac{V}{\epsilon}
ight) d\epsilon.$$

The irregular singularity at $\epsilon = 0$ leads to divergent formal solutions, Borel sums etc.

Non-linear version: Joyce structures

- Assume that $\langle -, \rangle$ is non-degenerate so the Poisson torus $\mathbb{T} \cong (\mathbb{C}^*)^n$ is symplectic. Replace the group $\operatorname{GL}_n(\mathbb{C})$ in the Frobenius story by $\operatorname{Symp}(\mathbb{T})$.
- Look for a pencil of non-linear, flat, symplectic connections on T_M .
- Along with other features, e.g. a \mathbb{C}^* -action, this leads to the notion of a Joyce structure.
- We expect a Joyce structure on space of stability conditions of CY₃ category.
- But we need conditions on the growth rates of the DT invariants.
- Constructing the Joyce structure from the DT invariants involves solving Riemann-Hilbert problems: this is hard!

Lifts of tangent vectors

Pencil of non-linear connections on the tangent bundle

Let *M* be a complex manifold with tangent bundle $\pi: X = T_M \to M$. There is a canonical isomorphism $\nu: \pi^*(T_M) \to \ker(\pi_*)$. Set $v = i \circ \nu$. Fix a non-linear connection on π , i.e. a splitting $h: \pi^*(T_M) \to T_X$.

Consider the pencil of connections $h_{\epsilon} = h + \epsilon^{-1} v$ with $\epsilon^{-1} \in \mathbb{C}$.

Take a holomorphic symplectic form ω on M.

The fibres $\pi^{-1}(m)$ are symplectic manifolds.

Assume that all the connections h_{ϵ} are flat and symplectic.

Joyce structure and associated hyperkähler structure

For a Joyce structure we impose extra symmetries: invariance under

- a \mathbb{C}^* -action on *M* lifted to *X*,
- translation by an integral affine structure $T_M^{\mathbb{Z}} \subset T_M$,
- the involution $-1: T_M \to T_M$.

We have a splitting $T_X = im(v) \oplus im(h) \cong T_M \oplus T_M$.

This gives a complex hyperkähler structure on X:

$$g = \begin{pmatrix} 0 & \omega \\ \omega & 0 \end{pmatrix}, \qquad I = \begin{pmatrix} i \cdot \mathbb{1} & 0 \\ 0 & -i \cdot \mathbb{1} \end{pmatrix}, \qquad J = \begin{pmatrix} 0 & -\mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix}.$$

Thus (I, J, K) preserve g and are parallel for ∇^{LC} on T_X .

Twistor space of a Joyce structure

The image of $h_{\epsilon} = h + \epsilon^{-1} v$ is an integrable distribution $H_{\epsilon} \subset T_X$.

Define the space of leaves $Z_{\epsilon} = X/H_{\epsilon}$.

Varying ϵ gives a twistor space $\pi \colon Z \to \mathbb{P}^1$.

There is a \mathbb{C}^* -action on Z lifting the one on \mathbb{P}^1 .

The central fibre is $Z_0 = M$.

In progress: class $S[A_1]$ case and generating functions

Moduli-theoretic construction of Joyce structures for theories of class $S[A_1]$.

- Partly joint with Nikita Nikolaev and Menelaos Zikidis.
- Like a complexified Hitchin system, but much simpler ("conformal limit").
- Twistor fibres Z_{ϵ} for $\epsilon \in \mathbb{C}^*$ have an étale map¹ to the cluster variety!

Use the symplectic geometry of the Joyce structure to define generating functions.

- The complex hyperkähler manifold X is the space of twistor lines.
- This gives a symplectic map $F: X \to Z_1 \times Z_\infty$.
- Choosing symplectic potentials gives a generating function.
- In the conifold example this reproduces the partition function.
- In the class $S[A_1]$ case of the A₂ quiver we get the Painlevé I τ -function.

¹I made a mistake in the talk here, by claiming they were *equal* to the cluster variety.